AD

AD-E403 357

Technical Report ARMET-TR-11012

A DENSITY FUNCTION THEORY (DFT) STUDY OF THE PROPOSED INSENSITIVE HIGH ENERGY DENSITY MATERIAL (IHEDM): 2-AZA-3-DINITROMETHYLENE-4-AZANITRO BICYCLO [3.3.0]-7-NITRO-6,8 DIAZOLE (ADAND)

Michael E. Miller

October 2011

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER

Munitions Engineering Technology Center

Picatinny Arsenal, New Jersey

Approved for public release; distribution is unlimited.

20111104403

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent disclosure of its contents or reconstruction of the document. Do not return to the originator.

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-01-0188			
gathering and maintain collection of information (0704-0188), 1215 Jeff	ning the data needen, including suggestion ferson Davis Highwa or failing to comply was or failing to comply was	d, and completing ons for reducing the y, Suite 1204, Arienth a collection of its contractions of its contraction of its contra	and reviewi be burden to ngton, VA 22 nformation if	ng the collection of inform Department of Defense, W.	ation. Send ashington He should be av	comment eadquarter vare that r	me for reviewing instructions, seerching existing data sources, ts regarding this burden estimate or eny other espect of this rs Services Directorete for Information Operations and Reports notwithstanding eny other provision of lew, no person shall be	
1. REPORT DAT				ORT TYPE			3. DATES COVERED (From - To)	
4. TITLE AND SU A DENSITY F	JBTITLE	HEORY (FT) ST	UDY OF THE		5a. CONTRACT NUMBER		
	INSENSITIV	E HIGH È	NEŔGY	DENSITY MATE	ERIAL	5b. GRANT NUMBER		
BICYCLO [3.3						5c. PF	ROGRAM ELEMENT NUMBER	
6. AUTHORS						5d. PF	ROJECT NUMBER	
Michael E. Mi	ller					5e. TA	ASK NUMBER	
						5f. WO	ORK UNIT NUMBER	
7. PERFORMING U.S. Army AR) AND AE	DDRESS(ES)		1	8. PERFORMING ORGANIZATION REPORT NUMBER	
	/arheads & N		ng Tech	nnology Director	ate			
Picatinny Arse		06-5000			٠			
9. SPONSORING U.S. Army AR		G AGENCY N	IAME(S)	AND ADDRESS(ES	5)		10. SPONSOR/MONITOR'S ACRONYM(S)	
Knowledge & Picatinny Arse	Process Ma		(RDAR-	EIK)		11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
						Technical Report ARMET-TR-11012		
12. DISTRIBUTION	ON/AVAILABIL	IIYSIAIEM	ENI					
Approved for	public releas	se; distribut	ion is uı	nlimited.				
13. SUPPLEMEN	NTARY NOTES	3						
14. ABSTRACT								
14. ADSTRACT								
							erial (IHEDM) 2-aza-3- reported. A Density Functional	
							ture and stability as well as	
							the Gaussian03 software with the	
							of detonation of the proposed	
							rgy density of the proposed IHEDM	
							troimidazole (2,4-DNI); RDX ; 2-	
			de (MDI	NTO); and HMX	to enat	ole cor	nparison of the chosen explosive	
performance 15. SUBJECT TE		O ADAND.						
		4-azanitro	bicvclo	[3.3 .OJ-7-nitro-	3.8-diaz	ole (A	DAND); 2,4-dinitroimidazole (2,4-	
							l-4,5-dinitro-I,2,3-triazole-2-oxide	
				B3LYP; Vibratior posite volumetric			eat of detonation; Oxygen balance	
16. SECURITY O			17.	LIMITATION OF	18. NUI		19a. NAME OF RESPONSIBLE PERSON	
DEDOE: 1:	AD07070	T1110 T 1		STRACT	OF PAG	FS	Michael E. Miller	
a. REPORT b.	ABSTRACT U	c. THIS PAG	at	SAR	16		19b. TELEPHONE NUMBER (Include area code) (973) 724-9525	

CONTENTS

	Page
Summary	1
Introduction	2
Methods, Assumptions, and Procedures	2
Results and Discussion	3
Conclusions	8
Bibliography	9
Distribution List	11

SUMMARY

The stability and thermochemistry of a proposed "bicyclo-" derivative of the known insensitive high energy density materials (IHEDMs) FOX-7 (I,I-diamino-2,2-dinitroethene-DADNE) and 2,4-dinitroimidazole (2,4-DNI) is assessed using the Density Functional Theory (DFT) as implemented in Gaussian03. The optimized structure of the proposed energetic, 2-aza-3-dinitromethylene-4-azanitro bicycle [3.3.0]-7-nitro-6,8-diazole (ADAND), is illustrated in figure 1a and b. The DFT results demonstrate that ADAND is indeed stable on the molecular potential energy surface with energy density and heat of detonation characteristics superior to FOX-7, RDX, and HMX. In particular, ADAND possesses a molecular energy density 24% greater than RDX and 53% greater than 2,4-DNI, and a heat of detonation 93% greater than 2-methyl-4,5-dinitro-I,2,3-triazole-2-oxide (MDNTO), and 26% greater than HIVIX. Thermochemistry results and volumetric-energy density calculations indicate that this molecule is superior overall to HMX, FOX-7, RDX, MDNTO, and 2,4-DNI and may also possess significant potential for applications where explosive or propellant properties may be pursued and tuned in a single molecular configuration.

B3LYP/6-31g(d) optimized structure top view

B3LYP/6-31g(d) optimized structure side view

Figure 1
ADAND
(grey = carbon, blue = nitrogen; red = oxygen, white = hydrogen)

INTRODUCTION

In organic chemistry, the structures of some rings of atoms are unexpectedly stable. Aromaticity is a chemical property in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibit stabilization stronger than would be expected by the stabilization of conjugation alone. It can also be considered a manifestation of cyclic delocalization and of resonance. Moreover, the presence of hydrogen bonding in molecules also signals greater stability than what would be expected. These characteristics ultimately equate to a general trend toward decreased impact and friction sensitivity when present in energetic materials.

The ADAND is essentially a bicyclo-aza derivative of the well-known IHEDM's 2,4-DNI and FOX-7 and is expected to possess equivalent insensitivities due to availability of inter- and intramolecular hydrogen bonds and electron delocalization with enhanced volumetric power characteristics due to the additional molar volume of decomposition products.

METHODS, ASSUMPTIONS, AND PROCEDURES

Computational details: DFT was applied in this study as implemented in Gaussian03. For the Kohn-Sham Hamiltonian, a generalized gradient approximation is included in Becke's exchange correlation functional B3LYP. This three-parameter hybrid functional was paired with a valence double-zeta polarized basis set; i.e., 6-3 lg(d). This pairing represents a reasonable level of theory and basis set complexity, which duplicates gas-phase heats of formation and heats of reaction for CNOH-containing molecules with good to excellent accuracy.

For calculation of the oxygen balance (OB), the following approach was used: for an explosive that contains some or all of the following atoms: aluminum, boron, carbon, calcium, chlorine, fluorine, hydrogen, potassium, nitrogen, sodium, and oxygen (with the formula Al_{al} , B_b , C_c , Ca_{ca} , Cl_{cl} , F_f , H_h , K_k , Na_{na} , O_o), the oxygen balance (OB%) will be

$$-\frac{32\{0.75al+0.75b+1c+0.5ca-0.25f+0.25f+0.25h+0.25k+0n+0.25na-0.05o\}}{explosive\ molecular\ weight}x\ 100,$$

where the indices - al, b, c, ca, cl, f, h, k, n, na, and o denote the number of atoms of each element in a mole of the explosive composition. The contribution of nitrogen to the oxygen balance is zero, since it does not bind to the other elements.

The heats of reaction (i.e., detonation - ΔH^{o}_{det}) for the respective molecules were determined as ΔH^{o}_{f} (products) - ΔN^{o}_{f} (reactants) using the thermochemical output from the Gaussian DFT calculations.

The molecular energy density values were calculated from the heats of reaction results and the molecular masses: Energy Density (KJ/gram) = (KJ/mole) (moles/gram).

The explosion of one mole of ADAND produces 10 molar volumes, as can be seen from the stochiometrically balanced equation shown in the next section. These molar volumes at 0°C and atmospheric pressure form an actual volume of (10 moles)(22.4 L/mole) = 224 L. Using Charles' law, this volume can be calculated for other temperatures; for example, at 15°C (288.15K), $V_{15}^{\circ}_{C}$ = (22.4 L/mole)(288.15/273.15) = 23.64 L/mole. Therefore, at 15°C, the volume of gas produced by the explosive decomposition of one mole of ADAND is: $V_{15}^{\circ}_{C}$ = (23.64 L/mole)(10 moles) = 236.4 L. As a measure of performance, the Composite Volumetric-Energy Density (CVED) = (Energy Density)(Volume of gas produced) was introduce. The CVED results are tabulated in table 2.

RESULTS AND DISCUSSION

The results of the normal mode analysis (fig. 2) for the proposed IHEDM structure yielded no imaginary frequencies for the 3N–6 vibrational degrees of freedom, where N is the number of atoms in the system. This indicates that the structure of the ADAND molecule corresponds to at least a local minimum on the potential energy surface. Figure 2 also includes the specific infrared and Raman frequencies for future reference should the synthesis and characterization of ADAND be pursued.

In order to estimate the amount of energy available for release upon detonation, the Kistiakowsky-Wilson rules need to be applied, which state that (for an explosive with an OB not below -40%):

- 1. Carbon atoms are converted to CO
- 2. Any remaining oxygen is used to convert hydrogen atoms to H₂O
- 3. Any oxygen remaining after no. 2 is satisfied is used to convert CO to CO₂
- 4. All nitrogen atoms are converted to N₂

Applying these rules to ADAND, FOX-7, RDX, and HIVIX the following ratios of detonation products are predicted:

ADAND:	$C_5N_8O_8H_2$	\rightarrow 3CO + 1H ₂ O + 2CO ₂ + 4N ₂	
FOX-7:		→ 2CO + 2H ₂ O + 2N ₂	
2,4-DNI:		→ 3CO + 1H ₂ O + 2N ₂	
RDX;			
	C31V6O6H6	→ 3CO + 3H ₂ O + 3N ₂	
HMX:		\rightarrow 4CO + 4H ₂ O + 4N ₂	
MDNTO:	$C_3O_5N_5H_3$	\rightarrow 2CO + 3/2(H ₂ O) + 5/2(N ₂) + $\frac{3}{4}$ (CO ₂)) + ¼(C)
	1	2	3
	A	A	A
Frequencies	43.4116	50.0993	68.8076
Red. masses	14.3166	13.5418	14.5989
Frc consts	0.0159	0.0200	0.0407
IR Inten	2.0007	0.6550	1.4761
Raman Activ	0.5888	1.0998	2.3282
Depolar (P)	0.4701	0.7387	0.6210
Depolar (U)	0.6395	0.8497	0.7662
	4	5	6
Engage	A 75 1410	Α	A
Frequencies Red. masses	75.1412	81.2987	93.0765
Frc consts	15.5564	15.4099	14.2334
IR Inten	0.0518	0.0600	0.0727
Raman Activ	0.6635	1.1968	1.9353
		1.9302	1.0985
Depolar (P) Depolar (U)	0.6700	0.6823	0.5631
bepoist (0)	0.0024	0.8112	0.7205
	7	8	9
	A	A	Ä
Frequencies	112.5171	129.7963	151.7156
Red. masses	14.1425	10.2415	13.0095
Frc consts	0.1055	0.1017	0.1764
IR Inten	1.7432	3.5778	0.9644
Raman Activ	4.4898	1.2385	0.9905
Depolar (P)	0.4181	0.2029	0.6973
Depolar (U)	0.5897	0.3373	0.8217

Figure 2
Vibrational frequencies (normal modes) of ADAND

	10	11	12
	A	A	A
Frequencies	190.2554	207.1817	224.1383
Red. masses	13.8186	12.6169	13.9912
Frc consts	0.2947	0.3191	0.4141
IR Inten	2.4132		
		2.8567	5.4176
Raman Activ	2.5183	1.2658	2.4147
Depolar (P)	0.3692	0.7486	0.6595
Depolar (U)	0.5393	0.8562	0.7948
	1.2	14	1.5
	13 A	14	15
W		A	A
Frequencies	238.5793	278.0211	288.4893
Red. masses	12.9665	13.3798	13.1894
Frc consts	0.4348	0.6093	0.6467
IR Inten	0.4005	4.1542	0.6194
Raman Activ	2.4949	9.3699	17.1030
Depolar (P)	0.6261	0.3282	0.1457
Depolar (U)	0.7701	0.4942	0.2544
•			
	16	17	18
	A	A	A
Frequencies	316.3828	343.3955	402.8314
Red. masses	15.0021	10.6088	13.2130
Frc consts	0.8848	0.7371	1.2633
IR Inten	1.1250		
		1.0858	10.0912
Raman Activ	1.7073	2.2918	12.7799
Depolar (P)	0.1125	0.1562	0.3962
Depolar (U)	0.2022	0.2702	0.5676
	19	20	21
	A	A	A
Frequencies	420.7782	431.0216	474.3897
Red. masses	11.8853	14.6426	
Frc consts	1.2398	1.6028	10.1653
IR Inten	24.3829	2.9899	1.3478
			6.4332
Raman Activ	5.5681	8.5741	4.8852
Depolar (P)	0.2134	0.3374	0.6009
Depolar (U)	0.3517	0.5045	0.7507
	22	23	24
	A	A	A
Frequencies	489.4222	558.6336	592.9152
Red. masses	10.8995	8.4633	3.7715
Frc consts	1.5382	1.5561	
IR Inten	4.2582	11.0967	0.7812
			54.0818
Raman Activ	16.9902	0.5673	2.9622
Depolar (P)	0.4170	0.4890	0.4491
Depolar (U)	0.5886	0.6568	0.6198
	25	26	27
	A	A	A
Frequencies	620.8797	649.2942	653.3773
Red. masses	1.2433	7.5125	1.3457
Frc consts		1.8660	0.3385
Frc consts IR Inten	0.2824	1.8660 4.2728	0.3385
IR Inten	0.2824 53.2535	4.2728	93.4048
IR Inten Raman Activ	0.2824 53.2535 1.3157	4.2728 7.9107	93.4048 0.3844
IR Inten	0.2824 53.2535	4.2728	93.4048

Figure 2 (continued)

	20	20	2.0
	28 A	29	30
Francisco	680.3458	A 707 5025	A 701 2120
Frequencies Red. masses	8.4472	707.5935 13.7458	721.3138
Frc consts	2.3037	4.0550	7.7250
IR Inten	14.8680	8.4421	2.3681
Raman Activ	0.7849		1.3080
Depolar (P)	0.4039	4.7646	5.7380
Depolar (U)		0.3208	0.5050
Debolar (0)	0.5754	0.4858	0.6711
	31	32	33
	A	A	A
Frequencies	729.9483	742.1343	752.1826
Red. masses	12.2446	8.6069	13.1773
Frc consts	3.8440	2.7929	4.3926
IR Inten	27.9397	2.1547	13.4872
Raman Activ	1.6963	2.5190	5.3609
Depolar (P)	0.7470	0.7500	0.5062
Depolar (U)	0.8552	0.8571	0.6721
	34	35	36
	A	A	A
Frequencies	779.8693	795.2999	818.8794
Red. masses	10.6927	13.5389	10.3562
Frc consts	3.8316	5.0454	4.0916
IR Inten	26.3990	41.0678	53.2830
Raman Activ	24.8638	4.5643	23.0538
Depolar (P)	0.3273	0.6401	0.1360
Depolar (U)	0.4931	0.7806	0.2395
	37	38	39
	A	λ	A
Frequencies	821.9033	859.0781	912.9362
Red. masses	10.8798	9.2155	9.0904
Frc consts	4.3302	4.0072	4.4639
IR Inten	53.9138	87.3435	43.6572
Raman Activ	3.8247	5.6195	125.7859
Depolar (P)	0.4679	0.4289	0.2467
Depolar (U)	0.6375	0.6003	0.3958
	40	41	42
	A	A	A
Frequencies	994.4403	1017.9286	1082.5008
Red. masses	8.6087	7.9102	2.7006
Frc consts	5.0158	4.8291	1.8645
IR Inten	133.1869	46.9564	212.9864
Raman Activ	152.5137	4.7128	34.7196
Depolar (P)	0.2067	0.2985	0.7135
Depolar (U)	0.3426	0.4598	0.8328

Figure 2 (continued)

	43	44	45
	A	A	A
Frequencies	1115.0370	1163.2035	1207.5869
Red. masses	6.0318 4.4185	2.2804 1.8179	4.9419 4.2460
IR Inten	7.9488	39.4075	45.1799
Raman Activ	20.6921	3.7022	56.5432
Depolar (P)	0.5019	0.7373	0.2557
Depolar (U)	0.6683	0.8488	0.4073
•			
	46	47	48
	A	A	A
Frequencies	1263.9145	1298.4819	1337.8483
Red. masses	5.6968	12.6006	5.4962
Frc consts	5.3619	12.5173	5.7960
IR Inten	33.5465	302.1242	763.8799
Raman Activ Depolar (P)	82.6265 0.4089	348.7459 0.4027	346.0043
Depolar (U)	0.5804	0.5742	0.5102 0.6757
bepoint (0)	0.3004	0.3/42	0.0757
	49	50	51
	A	A	A
Frequencies	1363.4299	1367.8912	1387.9831
Red. masses	13.3263	12.2590	5.8489
Frc consts	14.5957	13.5148	6.6388
IR Inten	880.9572	59.7193	24.4175
Raman Activ	588.6832	73.6245	85.3694
Depolar (P)	0.4322	0.7160	0.1622
Depolar (U)	0.6035	0.8345	0.2791
	52	53	54
	52 A	53 A	54 A
Frequencies			A
Frequencies Red. masses	A	A	
-	A 1403.3036	A 1464.8809	A 1542.5950
Red. masses Frc consts IR Inten	A 1403.3036 4.9725 5.7694 28.4631	A 1464.8809 11.4831 14.5183 91.3583	A 1542.5950 11.4986 16.1213 188.5051
Red. masses Frc consts IR Inten Raman Activ	A 1403.3036 4.9725 5.7694 28.4631 877.7864	A 1464.8809 11.4831 14.5183 91.3583 72.8563	A 1542.5950 11.4986 16.1213 188.5051 667.2161
Red. masses Frc consts IR Inten Raman Activ Depolar (P)	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580
Red. masses Frc consts IR Inten Raman Activ	A 1403.3036 4.9725 5.7694 28.4631 877.7864	A 1464.8809 11.4831 14.5183 91.3583 72.8563	A 1542.5950 11.4986 16.1213 188.5051 667.2161
Red. masses Frc consts IR Inten Raman Activ Depolar (P)	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101
Red. masses Frc consts IR Inten Raman Activ Depolar (P)	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U)	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U)	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824 4.6434	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088 61.2750	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Raman Activ	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723 40.9754
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824 4.6434 306.1736	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088 61.2750 73.4657	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar (P)	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824 4.6434 306.1736 0.2939 0.4543	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088 61.2750 73.4657 0.2496 0.3995	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723 40.9754 0.4114
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar (P)	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824 4.6434 306.1736 0.2939 0.4543	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088 61.2750 73.4657 0.2496 0.3995	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723 40.9754 0.4114
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U)	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824 4.6434 306.1736 0.2939 0.4543 58 A	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088 61.2750 73.4657 0.2496 0.3995 59 A	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723 40.9754 0.4114 0.5830 60 A
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U)	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824 4.6434 306.1736 0.2939 0.4543 58 A 1634.0959	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088 61.2750 73.4657 0.2496 0.3995 59 A 1652.1375	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723 40.9754 0.4114 0.5830 60 A 1670.4485
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824 4.6434 306.1736 0.2939 0.4543 58 A 1634.0959 8.2306	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088 61.2750 73.4657 0.2496 0.3995 59 A 1652.1375 14.0970	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723 40.9754 0.4114 0.5830 60 A 1670.4485 13.7980
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824 4.6434 306.1736 0.2939 0.4543 58 A 1634.0959 8.2306 12.9490	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088 61.2750 73.4657 0.2496 0.3995 59 A 1652.1375 14.0970 22.6710	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723 40.9754 0.4114 0.5830 60 A 1670.4485 13.7980 22.6847
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Red. masses Frc consts IR Inten	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824 4.6434 306.1736 0.2939 0.4543 58 A 1634.0959 8.2306 12.9490 254.5549	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088 61.2750 73.4657 0.2496 0.3995 59 A 1652.1375 14.0970 22.6710 194.4901	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723 40.9754 0.4114 0.5830 60 A 1670.4485 13.7980 22.6847 670.6027
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Raman Activ Red. masses Frc consts IR Inten Raman Activ	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824 4.6434 306.1736 0.2939 0.4543 58 A 1634.0959 8.2306 12.9490 254.5549 276.2332	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088 61.2750 73.4657 0.2496 0.3995 59 A 1652.1375 14.0970 22.6710 194.4901 26.0598	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723 40.9754 0.4114 0.5830 60 A 1670.4485 13.7980 22.6847 670.6027 1.6461
Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Depolar (P) Depolar (U) Frequencies Red. masses Frc consts IR Inten Red. masses Frc consts IR Inten	A 1403.3036 4.9725 5.7694 28.4631 877.7864 0.2690 0.4240 55 A 1590.3018 9.2495 13.7824 4.6434 306.1736 0.2939 0.4543 58 A 1634.0959 8.2306 12.9490 254.5549	A 1464.8809 11.4831 14.5183 91.3583 72.8563 0.3077 0.4706 56 A 1603.0612 11.4979 17.4088 61.2750 73.4657 0.2496 0.3995 59 A 1652.1375 14.0970 22.6710 194.4901	A 1542.5950 11.4986 16.1213 188.5051 667.2161 0.2580 0.4101 57 A 1624.7603 8.8971 13.8382 32.5723 40.9754 0.4114 0.5830 60 A 1670.4485 13.7980 22.6847 670.6027

Figure 2 (continued)

	61	62	63
	A	A	A
Frequencies	1760.2533	3517.8813	3633.5893
Red. masses	13.9574	1.0808	1.0824
Frc consts	25.4803	7.8802	8.4198
IR Inten	321.9431	156.9491	162.6587
Raman Activ	0.5185	161.3733	54.8973
Depolar (P)	0.7413	0.1727	0.1840
Depolar (U)	0.8514	0.2945	0.3108

Figure 2 (continued)

From this information and the DFT calculated heats of formation of the reactants and products, the heat of reaction (i.e., detonation) can be determined as follows:

$$\begin{split} &\Delta \text{H}^{\circ}_{\text{det}}\left(\text{ADAND}\right) = \left[3\Delta \text{H}^{\circ}_{\text{f}}(\text{CO}) + 1\Delta \text{H}^{\circ}_{\text{f}}(\text{H}_{2}\text{O}) + 2\Delta \text{H}^{\circ}_{\text{f}}(\text{CO}_{2}) + 4\Delta \text{H}^{\circ}_{\text{f}}(\text{N}_{2})\right] - \left[-\Delta \text{H}^{\circ}_{\text{f}}\left(\text{ADAND}\right)\right] \\ &\Delta \text{H}^{\circ}_{\text{det}}(\text{FOX-7}) = 2\Delta \text{H}^{\circ}_{\text{f}}(\text{CO}) + 2\Delta \text{H}^{\circ}_{\text{f}}(\text{H}_{2}\text{O}) + 2\Delta \text{H}^{\circ}_{\text{f}}(\text{N}_{2}) - \left[-\Delta \text{H}^{\circ}_{\text{f}}\left(\text{FOX-7}\right)\right] \\ &\Delta \text{H}^{\circ}_{\text{det}}(2,4\text{-DNI}) = 3\Delta \text{H}^{\circ}_{\text{f}}(\text{CO}) + 1\Delta \text{H}^{\circ}_{\text{f}}(\text{H}_{2}\text{O}) + 2\Delta \text{H}^{\circ}_{\text{f}}(\text{N}_{2}) - \left[-\Delta \text{H}^{\circ}_{\text{f}}\left(2,4\text{-DNI}\right)\right] \\ &\Delta \text{H}^{\circ}_{\text{det}}(\text{RDX}) = 3\Delta \text{H}^{\circ}_{\text{f}}(\text{CO}) + 3\Delta \text{H}^{\circ}_{\text{f}}(\text{H}_{2}\text{O}) + 3\Delta \text{H}^{\circ}_{\text{f}}(\text{N}_{2}) - \left[-\Delta \text{H}^{\circ}_{\text{f}}\left(\text{RDX}\right)\right] \\ &\Delta \text{H}^{\circ}_{\text{det}}(\text{HMX}) = 4\Delta \text{H}^{\circ}_{\text{f}}(\text{CO}) + 4\Delta \text{H}^{\circ}_{\text{f}}(\text{H}_{2}\text{O}) + 4\Delta \text{H}^{\circ}_{\text{f}}(\text{N}_{2}) - \left[-\Delta \text{H}^{\circ}_{\text{f}}\left(\text{HMX}\right)\right] \\ &\Delta \text{H}^{\circ}_{\text{det}}(\text{MDNTO}) = \\ &2\Delta \text{H}^{\circ}_{\text{f}}(\text{CO}) + 3/2\Delta \text{H}^{\circ}_{\text{f}}(\text{H}_{2}\text{O}) + 5/2\Delta \text{H}^{\circ}_{\text{f}}(\text{N}_{2}) + 3/4\Delta \text{H}^{\circ}_{\text{f}}(\text{CO}_{2}) + \frac{1}{4}(\text{C}) - \left[-\Delta \text{H}^{\circ}_{\text{f}}\left(\text{MDNTO}\right)\right] \end{split}$$

The heats of detonation for these molecules, as well as their products, are reported as the "sum of electronic and thermal energies" in atomic units (i.e., Hartrees), via the thermochemistry output calculated at the B3LYP/6-31g(d) level of theory (tables 1 and 2).

Table 1
Thermochemistry output for detonation products

	MW	∆H° _f (au)*
CO ₂	44	-188.567
CO	28	-113.302
H₂O	18	-76.385
N ₂	28	-109.516
С	12	-37.844

^{*}Sum of electronic and thermal energies as reported from the Gaussian03 DFT thermochemistry results.

Table 2
ADAND, FOX-7, RDX, HMX, MDNTO, and 2,4-DNI thermochemistry output and theoretical performance parameters

	ΔH ^o _f (au)*	MW	OB (%)	ΔH^{o}_{det}	Energy density	Volume (L)	CVED
				(au/KJ/mole)	(KJ/g)		(KJ-L/g)
ADAND	-1230.891	302	-21.2	-0.598/-1,571	5.2	236.4	1229
FOX-7	-598.208	148	-21.6	-0.198/-519	3.5	141.84	496
2,4-DNI	-635.118	158	-30.4	-0.205/-538	3.4	141.84	482
RDX	-897.253	222	-21.6	-0.356/-935	4.2	212.76	894
HMX	-1196.336	296	-21.6	-0.476/-1250	4.2	283.68	1191
MDNTO	-765.549	189	-1.3	-0.310/-814	4.3	159.57	686

^{*}Sum of electronic and thermal energies as reported from the Gaussian03 DFT thermochemistry results.

Note: Volume of gases calculated at 15°C.

Note that these calculations are based on rather idealized gas-phase enthalpies, and in reality, other factors such as phase transition from solid state to gaseous state, crystal and crystal packing density will be important. The point is that the ΔH^{o}_{det} calculations are not necessarily to be taken in the absolute sense, but considered as a relative trend. In this way, more meaningful conclusions can be obtained.

CONCLUSIONS

The Density Functional Theory results of this study indicate that the newly proposed high energy density material, 2-aza-3, dinitromethylene-4-azanitro bicycle [3.3.0]-7-nitro-6,8-diazole (ADAND), has a molecular energy density nearly 50% greater than FOX-7 and 24% greater than either RDX or HMX. Further, the composite volumetric energy density of ADAND is approximately 150% greater than FOX-7, 155% greater than 2,4-DNI, and 37% greater than RDX. The optimized structure is stable on the molecular potential energy surface, as evidenced by the absence of any imaginary frequencies. Also, the optimized geometry exhibits a relatively flat molecular configuration, which would be expected to pack efficiently in its solid state crystal lattice.

BIBLIOGRAPHY

- Bellamy, A.J., "High Energy Density Materials" from Structure and Bonding Series, V. 125, FOX-7 (1,1-diamino-2,2-dinitroethene), T.M. Klapotke, D.M.P. Mingos, Eds., 2007.
- Dorsett, H., "Computational Studies of FOX-7, A New Insensitive Explosive," DSTO-TR-1054, Defence Science and Technology Office (DSTO), Australia, 2000.
- Muthurajan, H. and Ghee, A. H., "Software Development for the Detonation Product Analysis of High Energetic Materials — Part I," Central Euro. J. of Energetic Materials, 5(3-4), 19-35, 2008.
- Cooper, P.W., "Introduction to Detonation Physics," Chapter 4: Explosive Effects and Applications, J.A. Zukas and W.P. Walters, Eds., 1997.
- Kubota, N., "Propellants and Explosives Thermochemical Aspects of Combustion," Chapter 4: Energetics of Propellants and Explosives, 1st Ed., 2002.
- Akhavan, J., "The Chemistry of Explosives," Chapter 5: Thermochemistry of Explosives, 1998.
- Osmont, A. et al., "Ab initio quantum chemical predictions of enthalpies of formation, heat capacities, and entropies of gas-phase energetic compounds," Combustion and Flame 151, 262-273, 2007
- Nair, U.R., Asthana, S.N. et al., "Advances in High Energy Materials," Defence Science Journal, Vol. 60, No. 2, pp. 137-151, March 2010.
- Frisch, M. J. et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.

DISTRIBUTION LIST

U.S. Army ARDEC ATTN: RDAR-EIK

RDAR-GC

RDAR-MEE-W, P. Anderson

E. Baker

R. Damavarapu

P. Dave W. Davis T. Manning R. Patel

R. Surapaneni

RDAR-ME, R. Batra RDAR-MEE, R. Benjamin RDAR-MEM-A, A. Farina RDAR-EI, B. Machak RDAR-EIB, D. Magidson RDAR-ELI-LI, J. Teck SFAE-AMO-CCS, J. Pelino

Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)

ATTN: Accessions Division

8725 John J. Kingman Road, Ste 0944

Fort Belvoir, VA 22060-6218

Commander

Soldier and Biological/Chemical Command

ATTN: AMSSB-CII, Library

Aberdeen Proving Ground, MD 21010-5423

Director

U.S. Army Research Laboratory

ATTN: AMSRL-CI-LP, Technical Library

Bldg. 4600

Aberdeen Proving Ground, MD 21005-5066

Chief

Benet Weapons Laboratory, WSEC

U.S. Army Research, Development and Engineering Command Armament Research, Development and Engineering Center

ATTN: RDAR-WSB

Watervliet, NY 12189-5000

Director

U.S. Army TRADOC Analysis Center-WSMR

ATTN: ATRC-WSS-R

White Sands Missile Range, NM 88002

Chemical Propulsion Information Agency ATTN: Accessions 10630 Little Patuxent Parkway, Suite 202 Columbia, MD 21044-3204

GIDEP Operations Center P.O. Box 8000 Corona, CA 91718-8000